Given a binary tree, collect a tree’s nodes as if you were doing this: Collect and remove all leaves, repeat until the tree is empty.
Given binary tree
1
/ \
2 3
/ \
4 5
Returns [4, 5, 3], [2], [1].
Explanation: 1. Removing the leaves [4, 5, 3] would result in this tree:
Returns [4, 5, 3], [2], [1].
题目大意:将二叉树的叶子节点一层层剪掉,并按层次输出. 阶梯思路:深度优先遍历二叉树(DFS),在每个节点处计算高度(到叶子的距离),这个高度可作为剪枝时的顺序依据,高度越小的越先剪掉. 代码: 特别注意,将vector<vector<int>> res
作为递归的参数传入时,必须使用引用&,否则所做修改只在函数作用域内,不会改变外部.
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<vector<int>> findLeaves(TreeNode* root) {
vector<vector<int>> res;
dfs(root, res);
return res;
}
//辅助函数,深度遍历
int dfs(TreeNode* root, vector<vector<int>>& res) {
if (!root) return 0; //空节点,高度为0
int level = max(dfs(root->left, res), dfs(root->right, res)) + 1; //每个节点高度为子树的最大高度+1,递归求
if (level > res.size()) res.push_back(vector<int>()); //每当高度超过res长度时,res扩张
//res从0开始,而level从1开始
res[level-1].push_back(root->val); //每个节点写入
return level;
}
};