k 为正无穷,参考122. 买卖股票的最佳时机,只是多了手续费的条件,状态方程变为
0 ≤ i ≤ n-1
dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i] - fee)
dp[i][1] = max(dp[i-1][1], dp[i-1][0] - prices[i])
解释:手续费在状态0时计算和1时是等效的,分别对应买时收费和卖时收费,只影响dp[i][1]的结果
我们最后求的是dp[n-1][0]
dp[0][0] = 0, dp[0][1] = -∞
class Solution:
def maxProfit(self, prices: List[int], fee: int) -> int:
n = len(prices)
dp = [[0] * 2 for _ in range(n+1)]
for i in range(n+1):
if i == 0:
dp[0][0] = 0
dp[0][1] = -sys.maxsize
continue
dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i-1] - fee)
dp[i][1] = max(dp[i-1][1], dp[i-1][0] - prices[i-1])
return dp[n][0]